Selection and characterization of novel DNA aptamers specifically recognized by Singapore grouper iridovirus-infected fish cells.
نویسندگان
چکیده
Singapore grouper iridovirus (SGIV) is a major viral pathogen of grouper aquaculture, and has caused heavy economic losses in China and South-east Asia. In this study, we generated four ssDNA aptamers against SGIV-infected grouper spleen (GS) cells using SELEX (systematic evolution of ligands by exponential enrichment) technology. Four aptamers exhibited high affinity to SGIV-infected GS cells, in particular the Q2 aptamer. Q2 had a binding affinity of 12.09 nM, the highest of the four aptamers. These aptamers also recognized SGIV-infected tissues with high levels of specificity. Protease treatment and flow cytometry analysis of SGIV-infected cells revealed that the target molecules of the Q3, Q4 and Q5 aptamers were trypsin-sensitive proteins, whilst the target molecules of Q2 might be membrane lipids or surface proteins that were not trypsin-sensitive. The generated aptamers appeared to inhibit SGIV infection in vitro. Aptamer Q2 conferred the highest levels of protection against SGIV and was able to inhibit SGIV infection in a dose-dependent manner. In addition, Q2 was efficiently internalized by SGIV-infected GS cells and localized at the viral assembly sites. Our results demonstrated that the four novel aptamers we generated were specific for SGIV-infected cells and could potentially be applied as rapid molecular diagnostic test reagents or therapeutic drugs targeting SGIV.
منابع مشابه
Isolation and characterization of a new class of DNA aptamers specific binding to Singapore grouper iridovirus (SGIV) with antiviral activities.
The Singapore grouper iridovirus (SGIV), a member of the genus Ranavirus, is a major viral pathogen that has caused heavy economic losses to the grouper aquaculture industry in China and Southeast Asia. No efficient method of controlling SGIV outbreaks is currently available. Systematic evolution of ligands by exponential enrichment (SELEX) is now widely used for the in vitro selection of artif...
متن کاملDifferential profiles of gene expression in grouper Epinephelus coioides, infected with Singapore grouper iridovirus, revealed by suppression subtractive hybridization and DNA microarray.
Suppression subtractive hybridization (SSH) was used to generate a subtracted cDNA library enriched with gene transcripts differentially expressed in the spleen of orange-spotted grouper Epinephelus coioides after 5 days of infection with Singapore grouper iridovirus (SGIV). In the forward and reverse-subtracted libraries, 260 and 153 non-redundant expressed sequence tags (EST), respectively, w...
متن کاملIdentification of a Novel Marine Fish Virus, Singapore Grouper Iridovirus-Encoded MicroRNAs Expressed in Grouper Cells by Solexa Sequencing
BACKGROUND MicroRNAs (miRNAs) are ubiquitous non-coding RNAs that regulate gene expression at the post-transcriptional level. An increasing number of studies has revealed that viruses can also encode miRNAs, which are proposed to be involved in viral replication and persistence, cell-mediated antiviral immune response, angiogenesis, and cell cycle regulation. Singapore grouper iridovirus (SGIV)...
متن کاملSelection and identification of Singapore grouper iridovirus vaccine candidate antigens using bioinformatics and DNA vaccination.
In this study, we described a rapid and efficient method which integrated the bioinformatic prediction and DNA vaccine technology to identify vaccine candidates against Singapore grouper iridovirus (SGIV). The 162 previously defined open reading frames (ORFs) of SGIV were subjected to extensive sequence similarity searches, as well as motif, cellular location, and domain prediction. Based on ou...
متن کاملIdentification and characterization of a novel lymphocystis disease virus isolate from cultured grouper in China.
Grouper Epinephelus spp. is one of the most important mariculture fish species in China and South-East Asian countries. The emerging viral diseases, evoked by iridovirus which belongs to genus Megalocytivirus and Ranavirus, have been well characterized in recent years. To date, few data on lymphocystis disease in grouper which caused by lymphocystis disease virus (LCDV) were described. Here, a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of general virology
دوره 96 11 شماره
صفحات -
تاریخ انتشار 2015